American Marine Highway Modeling Toolset

Jacek Kawecki
CSC Advanced Marine Center
June 26, 2012
Overview

• Project Goals
• DES Introduction
• Input Architecture
• Features
• I-64 Express Route
• East Coast Route
• Brown / Blue Water Route
Project Goals

• GMU Project Deliverable
 – A simulation of the economic, environmental, and logistic factors of transferring cargo from trucking routes to American Marine Highways for two scenarios:
 • Short route between Norfolk and Richmond (I-64 Express)
 • Long route between New Bedford, Norfolk, and Cape Canaveral

• GMU Parallel Project Goal
 – Create a reusable modeling tool for evaluating AMH alternatives
 • Excel-driven / runtime model for a marine highway between two ports and three ports

• Current Work
 – Model blue/brown water route on Mississippi and Gulf
Introduction to DES Modeling

• Discrete Event Simulation (DES) is a computer simulation that models the chronological sequence and interaction of events
 – Example: Bank teller operations

• Model is created in ExtendSim 8 DES software
 – Uses Hierarchical Blocks - designed for “toolset” implementation
 – Allows for random interactions and variability
 – Has Monte Carlo capability to optimize process
 – Imports data from Excel – simplifies data input for user
 – Has free runtime version
Scalability Feature

- Fully scalable model for distances and amount of ports/travel segments
- "Lego-block" style architecture allows for interconnection of each block type
- Attributes tracked through each process can be fixed and time based
 - (Mileage based for road travel)
Intelligent Ship Control Feature

- Model tracks amount of cargo available to system. Releases ship only if it’s economically viable.
- Routes cargo if shipping route can’t handle volume
- Optimized release architecture predicts when it is most efficient to sail based on river currents/tides
Seasonal Probability of Cancellation/Costs Feature

- Built in architecture that allows user to specify any possible additional cost or cancellation
- Can be specified to be only activated within certain times
- Examples:
 - Seasonally dependent events such as route cancellation due to heavy fog in autumn or additional stevedoring costs due to rain-pay
 - Maintenance based costs dependent on ship characteristics
Input Architecture

• Inputs for all processes and metrics use the following format:

\[
Cost = a \cdot time + b \cdot distance + c
\]

– Where:
 » \(a\) – time dependant cost, e.g. $/hour
 » \(b\) – distance dependant cost, e.g. $/mile
 » \(c\) – constant or base cost

• Inputs are controlled via MS Excel spreadsheet
Metrics Tracked in Model

- Metrics tracked and summed for every piece of cargo:
 - Operating cost
 - Fuel cost
 - CO_2 emissions

- Metrics available for tracking:
 - Road maintenance cost
 - Congestion added
 - Accident rate
 - NO_x emissions
 - Particulate emissions
 - Noise pollution
I-64 Express Route Translated to ExtendSim Model
I-64 Express Route Results

- 26% of cargo is rerouted

- Average time between container leaving NIT/APMT/Richmond area and arriving at destination is 1.69 days

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Tug/Barge</th>
<th>Rerouted by Truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Cost</td>
<td>$237.06</td>
<td>$218.36</td>
<td>$317.30</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>$48.59</td>
<td>$44.84</td>
<td>$64.67</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$285.65</td>
<td>$263.20</td>
<td>$381.97</td>
</tr>
<tr>
<td>CO₂ Emissions [g]</td>
<td>55,726</td>
<td>49,731</td>
<td>90,029</td>
</tr>
</tbody>
</table>
Exploration Capabilities

• Design of Experiments approach to total cost per container with fluctuating fuel costs
 – Scenario does not have seasonal cancellations
 – Average rerouting rate is 14%
East Coast Long Route Model Translated to ExtendSim Model

GMU Consortium for Marine Highway Freight System
East Coast Long Route Results

- Average for door-to-door delivery
 - Canaveral – Norfolk: 6.84 days
 - Norfolk – New Bedford: 6.47 days
 - Canaveral – New Bedford: 8.19 days

<table>
<thead>
<tr>
<th></th>
<th>70% Full</th>
<th>80% Full</th>
<th>90% Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Cost</td>
<td>$1067.69</td>
<td>$1027.16</td>
<td>$982.93</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>$680.75</td>
<td>$611.58</td>
<td>$557.34</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$1748.44</td>
<td>$1638.74</td>
<td>$1540.27</td>
</tr>
</tbody>
</table>

Costs from Canaveral <-> New Bedford
Brown/Blue Water Route Diagram

- Joliet, IL
- Cairo, IL
- Port of NO
- Southern, IL
- Southern, MO
- Western, KY
- NOLA
- Tampa, FL

Key:
- Marine Travel
- Drayage

GMU Consortium for Marine Highway Freight System
Brown/Blue Water Barge Concept

Tow in Deep Draft Blue Water

FIG. 2a

Tow in Shallow Draft

FIG. 2b
Brown/Blue Water Route Preliminary Results

<table>
<thead>
<tr>
<th></th>
<th>Chicago – Tampa</th>
<th>Cairo, IL – Tampa</th>
<th>NOLA - Tampa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Cost</td>
<td>$1237.60</td>
<td>$1079.56</td>
<td>$954.79</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>$253.65</td>
<td>$215.73</td>
<td>$174.24</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$1489.11</td>
<td>$1295.29</td>
<td>$1128.76</td>
</tr>
<tr>
<td>Total Cost – Drayage & Port costs</td>
<td>$947.15</td>
<td>$756.33</td>
<td>$589.79</td>
</tr>
</tbody>
</table>

- Drayage and port costs have a large affect on door-to-door cost

- Eight (8) locks with 5% failure rate have minimal affect on system
 – Need to include realistic lock schedules and tug/barge queuing
Way Forward

• Support 2-port and 3-port models available to public
 – http://eastfire.gmu.edu/gmu-consortium/marine-highway/

• Add functionality
 – Inflation
 – Business fluctuations
 – Mid simulation fleet additions
 – ROI calculator

• Add model to PHX ModelCenter
 – Variable sensitivity analysis
 – Optimize systems
Questions

• Questions?
Backup
I-64 Express Route Inputs Used

• Environment
 – Simulation time is 365 days
 – Distance between Richmond and NIT is 85 NM
 – Bi-diurnal current on James river fluctuates up to 3 knots
 – 20% route cancellation due to fog in Spring and Fall
 – Marine fuel $3.00/gal Truck fuel $4.00/gal

• Tug/Barge
 – 3 round trips per week
 – 1 barge attached to tug with a capacity of 85 containers
 – 6 knot sailing speed
 – 65 gal/hour fuel burn rate when sailing
 – 10 gal/hour fuel burn rate when idling
 – $7000 operation cost per round trip
I-64 Express Route Inputs Used

- Trucking
 - Distance between Richmond and NIT/APMT is 76 statute miles
 - Drayage distance at Richmond is 10 statue miles
 - Speed
 - 30 MPH minimum
 - 40 MPH most likely
 - 50 MPH maximum
 - Operating cost
 - $83.68/hour
 - $1.73/mile
 - Fuel burn rate is 5 MPG
I-64 Express Route Inputs Used

• Cargo
 – ~16 containers per day are modeled at both APMT and NIT
 – ~32 containers per day are modeled in the Richmond area
 – Cargo is has a deadline to be delivered in 14 days after creation

• Ports
 – $40 per move
 – Ship cancels trip if less than 40 containers are available among all ports
East Coast Long Route Inputs Used

• Environment
 – Simulation time is 180 days
 – MGO fuel $3.00/gal Truck fuel $4.00/gal

• Ship
 – Capacity:
 • 151 53’ trailers
 • 104 53’ containers
 – Design speed 23.7 knots
 – Fuel consumption 106 tons/day at cruising
 – Operating cost $70,000/day*

*Finance costs, ownership costs, owner’s return on equity, insurance, and crew wages
East Coast Long Route Inputs Used

• Trucking
 – Speed
 • 45 MPH minimum
 • 55 MPH most likely
 • 60 MPH maximum
 – Distances
 • Canaveral – Norfolk: 800 miles
 • Norfolk – New Bedford: 600 miles
 • Canaveral – New Bedford: 1300 miles
 – Operating cost
 • $83.68/hour
 • $1.73/mile
 – Fuel burn rate is 5 MPG
East Coast Long Route Inputs Used

• Cargo
 – 30 containers per day are modeled at all ports
 – Cargo is has a deadline to be delivered in 21 days after creation

• Ports
 – $40 per move
 – Each move takes 3 minutes
 – Trip cancels trip if less than 100 containers are available among all ports

• Marine Routes
 – Canaveral – Norfolk: 620 nautical miles
 – Norfolk – New Bedford: 380 nautical miles
Brown/Blue Water Route Inputs

- Tug/barge lease/insurance/labor $14,000
- 65 gal/hour fuel burn rate when sailing
- 10 gal/hour fuel burn rate when idling
- Cargo Capacity
 - Juliet 264 53’ containers
 - Cairo 534 53’ containers
 - NOLA 950 53’ containers
- Tug/barge speed
 - 10 mph brown water South
 - 8 mph brown water North
 - 9 mph blue water (7.8 knots)
Brown/Blue Water Route Inputs

• Environment
 – Simulation time is 365 days
 – MGO fuel $3.00/gal Truck fuel $4.00/gal

• Cargo
 – 20-40 containers per day are modeled at all ports (stochastic)

• Ports
 – $80 per move
 – Each move takes 3 minutes
Brown/Blue Water Route Inputs

- **Locks**
 - Average time 1.5 hours (min 1 hour, max 2 hours, triangular distribution)
 - 8 locks between Juliet and Cairo
 - 5% failure rate

- **Distances**
 - Juliet - Cairo 405nm
 - Cairo - NOLA 640nm
 - NOLA - Tampa 475nm

- Flooding and drought cause cancellation of voyage 10% of trips in summer and winter months
Brown/Blue Water Route Inputs

• Drayage
 – Speed
 • 45 MPH minimum
 • 55 MPH most likely
 • 60 MPH maximum
 – Distances
 • 100 miles from each port
 – Operating cost
 • $83.68/hour
 • $1.73/mile
 – Fuel burn rate is 5 MPG