

American Marine Highway Modeling Toolset

Jacek Kawecki CSC Advanced Marine Center June 26, 2012

Overview

- Project Goals
- DES Introduction
- Input Architecture
- Features
- I-64 Express Route
- East Coast Route
- Brown / Blue Water Route

Project Goals

- GMU Project Deliverable
 - A simulation of the economic, environmental, and logistic factors of transferring cargo from trucking routes to American Marine Highways for two scenarios:
 - Short route between Norfolk and Richmond (I-64 Express)
 - Long route between New Bedford, Norfolk, and Cape Canaveral
- GMU Parallel Project Goal
 - Create a reusable modeling tool for evaluating AMH alternatives
 - Excel-driven / runtime model for a marine highway between two ports and three ports
- Current Work
 - Model blue/brown water route on Mississippi and Gulf

Introduction to DES Modeling

- Discrete Event Simulation (DES) is a computer simulation that models the chronological sequence and interaction of events
 - Example: Bank teller operations
- Model is created in ExtendSim 8 DES software
 - Uses Hierarchical Blocks designed for "toolset" implementation
 - Allows for random interactions and variability
 - Has Monte Carlo capability to optimize process
 - Imports data from Excel simplifies data input for user
 - Has free runtime version

Scalability Feature

- Fully scalable model for distances and amount of ports/travel segments
- "Lego-block" style architecture allows for interconnection of each block type
- Attributes tracked through each process can be fixed and time based
 - (Mileage based for road travel)

Intelligent Ship Control Feature

- Model tracks amount of cargo available to system. Releases ship only if it's economically viable.
- Routes cargo if shipping route can't handle volume
- Optimized release architecture predicts when it is most efficient to sail based on river currents/tides

Seasonal Probability of Cancellation/Costs Feature

- Built in architecture that allows user to specify any possible additional cost or cancellation
- Can be specified to be only activated within certain times
- Examples:
 - Seasonally dependent events such as route cancellation due to heavy fog in autumn or additional stevedoring costs due to rain-pay
 - Maintenance based costs dependant on ship characteristics

Input Architecture

Inputs for all processes and metrics use the following format:

$$Cost = a \cdot time + b \cdot distance + c$$

- Where:
 - » a − time dependant cost, e.g. \$/hour
 - » b − distance dependant cost, e.g. \$/mile
 - » c constant or base cost
- Inputs are controlled via MS Excel spreadsheet

Metrics Tracked in Model

- Metrics tracked and summed for every piece of cargo:
 - Operating cost
 - Fuel cost
 - CO₂ emissions
- Metrics available for tracking:
 - Road maintenance cost
 - Congestion added
 - Accident rate
 - NO_x emissions
 - Particulate emissions
 - Noise pollution

I-64 Express Route Translated to ExtendSim Model

I-64 Express Route Results

- 26% of cargo is rerouted
- Average time between container leaving NIT/APMT/Richmond area and arriving at destination is 1.69 days

	Average	Tug/Barge	Rerouted by Truck
Operating Cost	\$237.06	\$218.36	\$317.30
Fuel Cost	\$48.59	\$44.84	\$64.67
Total Cost	\$285.65	\$263.20	\$381.97
CO ₂ Emissions [g]	55,726	49,731	90,029

Exploration Capabilities

- Design of Experiments approach to total cost per container with fluctuating fuel costs
 - Scenario does not have seasonal cancellations
 - Average rerouting rate is 14%

East Coast Long Route Model Translated to ExtendSim Model

East Coast Long Route Results

- Average for door-to-door delivery
 - Canaveral Norfolk: 6.84 days
 - Norfolk New Bedford: 6.47 days
 - Canaveral New Bedford: 8.19 days

	70% Full	80% Full	90% Full
Operating Cost	\$1067.69	\$1027.16	\$982.93
Fuel Cost	\$680.75	\$611.58	\$557.34
Total Cost	\$1748.44	\$1638.74	\$1540.27

Costs from Canaveral <-> New Bedford

Brown/Blue Water Route Diagram

Brown/Blue Water Barge Concept

Brown/Blue Water Route Preliminary Results

	Chicago – Tampa	Cairo, IL – Tampa	NOLA - Tampa
Operating Cost	\$1237.60	\$1079.56	\$954.79
Fuel Cost	\$253.65	\$215.73	\$174.24
Total Cost	\$1489.11	\$1295.29	\$1128.76
Total Cost – Drayage & Port costs	\$947.15	\$756.33	\$589.79

- Drayage and port costs have a large affect on door-to-door cost
- Eight (8) locks with 5% failure rate have minimal affect on system
 - Need to include realistic lock schedules and tug/barge queuing

Way Forward

- Support 2-port and 3-port models available to public
 - http://eastfire.gmu.edu/gmu-consortium/marine-highway/
- Add functionality
 - Inflation
 - Business fluctuations
 - Mid simulation fleet additions
 - ROI calculator
- Add model to PHX ModelCenter
 - Variable sensitivity analysis
 - Optimize systems

Questions

• Questions?

Backup

I-64 Express Route Inputs Used

Environment

- Simulation time is 365 days
- Distance between Richmond and NIT is 85 NM
- Bi-diurnal current on James river fluctuates up to 3 knots
- 20% route cancellation due to fog in Spring and Fall
- Marine fuel \$3.00/gal Truck fuel \$4.00/gal

Tug/Barge

- -3 round trips per week
- 1 barge attached to tug with a capacity of 85 containers
- -6 knot sailing speed
- -65 gal/hour fuel burn rate when sailing
- 10 gal/hour fuel burn rate when idling
- \$7000 operation cost per round trip

I-64 Express Route Inputs Used

- Trucking
 - Distance between Richmond and NIT/APMT is 76 statute miles.
 - Drayage distance at Richmond is 10 statue miles
 - -Speed
 - 30 MPH minimum
 - 40 MPH most likely
 - 50 MPH maximum
 - Operating cost
 - \$83.68/hour
 - \$1.73/mile
 - Fuel burn rate is 5 MPG

I-64 Express Route Inputs Used

Cargo

- -~16 containers per day are modeled at both APMT and NIT
- -~32 containers per day are modeled in the Richmond area
- Cargo is has a deadline to be delivered in 14 days after creation

Ports

- -\$40 per move
- Ship cancels trip if less than 40 containers are available among all ports

East Coast Long Route Inputs Used

- Environment
 - Simulation time is 180 days
 - MGO fuel \$3.00/gal Truck fuel \$4.00/gal
- Ship
 - Capacity:
 - 151 53' trailers
 - 104 53' containers
 - Design speed 23.7 knots
 - Fuel consumption 106 tons/day at cruising
 - Operating cost \$70,000/day*

^{*}Finance costs, ownership costs, owner's return on equity, insurance, and crew wages

East Coast Long Route Inputs Used

- Trucking
 - -Speed
 - 45 MPH minimum
 - 55 MPH most likely
 - 60 MPH maximum
 - Distances
 - Canaveral Norfolk: 800 miles
 - Norfolk New Bedford: 600 miles
 - Canaveral New Bedford: 1300 miles
 - Operating cost
 - \$83.68/hour
 - \$1.73/mile
 - Fuel burn rate is 5 MPG

East Coast Long Route Inputs Used

Cargo

- 30 containers per day are modeled at all ports
- Cargo is has a deadline to be delivered in 21 days after creation

Ports

- -\$40 per move
- Each move takes 3 minutes
- Trip cancels trip if less than 100 containers are available among all ports

Marine Routes

- Canaveral Norfolk: 620 nautical miles
- Norfolk New Bedford: 380 nautical miles

- Tug/barge lease/insurance/labor \$14,000
- 65 gal/hour fuel burn rate when sailing
- 10 gal/hour fuel burn rate when idling
- Cargo Capacity
 - Juliet 264 53' containers
 - Cairo 534 53' containers
 - NOLA 950 53' containers
- Tug/barge speed
 - 10 mph brown water South
 - -8 mph brown water North
 - 9 mph blue water (7.8 knots)

- Environment
 - Simulation time is 365 days
 - MGO fuel \$3.00/gal Truck fuel \$4.00/gal
- Cargo
 - 20-40 containers per day are modeled at all ports (stochastic)
- Ports
 - -\$80 per move
 - Each move takes 3 minutes

Locks

- Average time 1.5 hours (min 1 hour, max 2 hours, triangular distribution)
- 8 locks between Juliet and Cairo
- -5% failure rate
- Distances

Juliet - Cairo 405nm

Cairo - NOLA 640nm

NOLA - Tampa 475nm

 Flooding and drought cause cancellation of voyage 10% of trips in summer and winter months

- Drayage
 - Speed
 - 45 MPH minimum
 - 55 MPH most likely
 - 60 MPH maximum
 - Distances
 - 100 miles from each port
 - Operating cost
 - \$83.68/hour
 - \$1.73/mile
 - Fuel burn rate is 5 MPG