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Many service providers oÆer customers the choice of either waiting in a line, or going o≤ine
and returning at a dynamically determined future time. The best known example is the
FASTPASS R∞ system at Disneyland. To operate such a system, the service provider must
first make an upfront decision on how to allocate service capacity between the two lines.
Then, during system operation, he must dynamically provide estimates of the waiting times
at both lines to each arriving customer. The estimation of o≤ine waiting times is complicated
by the fact that some o≤ine customers do not return for service at their appointed time.
We show that when demand is large and service is fast, for any fixed capacity allocation
decision, the two-dimensional process tracking the number of customers waiting inline and
o≤ine collapses to one dimension, and characterize the one-dimensional limit process as
a reflected diÆusion with linear drift. Next, we use the one-dimensional limit process to
develop approximations for the steady-state distribution of the number of customers waiting
inline and o≤ine, the steady-state probability of abandonment from the o≤ine queue, and
to dynamically estimate inline and o≤ine waits for each arriving customer. We conclude by
considering a cost model, and optimize the upfront capacity allocation decision.

1. Introduction

An inherent part of the service experience disliked by customers is waiting. In deference

to the fact that waiting influences customer evaluation of service (Taylor 1994), service

providers aim to minimize wait times. However, it is generally economically infeasible to

eliminate waiting entirely. Hence it is important to manage customers’ perceptions of their

wait (see, for example, Maister 1985, Katz et al. 1991, Bitran et al 2007), and realize that

diÆerent mechanisms for managing the customer perception of wait time produce diÆerent

customer reactions (Munichor and Rafaeli 2007).
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One factor that influences the psychological cost of waiting is whether the customer

physically waits in a line, or is o≤ine, and free to engage in other activities. In practice, we

observe many diÆerent implementations of the o≤ine idea. For example, many restaurants

give their patrons wireless devices that signal when a table becomes available. In call cen-

ters, the idea of giving customers a call-back option was studied by Armony and Maglaras

(2004a)(2004b). Cruises and all-inclusive resorts often allow customers to wander while wait-

ing for space to become available in a desired activity. Student healthcare clinics may oÆer

non-critical, drop-in patients that face a long delay to see a doctor or nurse the option of

returning later in the day.

Perhaps the best known real-life example of an o≤ine queue is the FASTPASS R∞ system

in Disneyland. For the most popular rides in Disneyland, visitors have a choice. They can

either wait in a line or obtain a FASTPASS R∞. The FASTPASS R∞ specifies a time at which

the visitor can take the ride, making it possible for the customer to visit other parts of the

park instead of waiting in a line. The FASTPASS R∞ also benefits Disney because o≤ine

customers may spend money on food or entertainment while wandering around the park.

Hence the o≤ine queue benefits both Disneyland and its customers.

The question that then arises is why Disneyland, or any other service provider, does not

oÆer only o≤ine queueing. One compelling reason to maintain an inline queue in addition

to an o≤ine queue is that some customers that join the o≤ine queue become consumed in

other activities, and do not return at their appointed time for service. Hence the inline

queue ensures capacity is not wasted. Also, customers joining the inline queue generally

do not abandon, and there may be costs other than having idle capacity associated with

abandoning customers. For example, in the amusement park setting, abandoning customers

that do not experience certain rides may be foregoing an important element of the parks

value proposition, and thus be less likely to return (eliminating a future revenue source).

Finally, customer preference for an inline or an o≤ine wait may change according to the

required amount of waiting associated with each option.

One convenient implementation of o≤ine queueing is having a reservation system. How-

ever, for services that are very popular, reservations tend to fill quickly. This may be an

acceptable situation for a restaurant anxious to maintain an image of exclusivity, but it is

not an acceptable situation for many service providers. In particular, in an all-inclusive

service setting, such as an amusement park where customers pay a fixed price for access

to a number of diÆerent attractions, customers expect to be able to visit any attraction of

their choosing throughout the course of a day. In fact, Disneyland attempted to implement

a reservation system in the mid 1990’s but found that early-arriving guests would quickly

book all available reservation capacity on all their most popular rides. Guests arriving after
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11 am were denied the reservation option (Dickson et al. 2005).

Hence it is of particular importance to investigate service models in which customers can

choose between inline and o≤ine queueing at the time of their arrival. Operating such a

system requires that the server provides arriving customers with waiting time estimates for

both the inline and o≤ine queue. In some settings, such as a restaurant, where the server

is able to communicate with customers, incorrect waiting time estimates can be corrected.

However, in other settings, such as Disneyland or any other amusement park, where commu-

nication with o≤ine customers is prohibitively di±cult, accurately estimating waiting times

is essential.

Our objective is to dynamically estimate wait times for customers as a function of ob-

served queue-lengths. The di±culty inherent in making such estimates accurately is com-

plicated by the presence of customers in the o≤ine queue that may abandon. The wait

time estimates we propose depend on an upfront static decision of how to allocate server

capacity between the inline and o≤ine queue. The upfront static capacity allocation deci-

sion is motivated by the amusement park setting, in which seats in each ride are allocated

in pre-determined proportions to the inline and the o≤ine queue.

We begin our analysis with a single-server system in which each arriving customer chooses

between waiting for service in a line, or going o≤ine, and returning for service at a dynami-

cally specified future time point, as shown in Figure 1. The service discipline is generalized

processor sharing. Specifically, when there are customers waiting in both lines, the server

processes the customers in the inline queue at rate µÆ, and those in the o≤ine queue at rate

µ(1° Æ). We later extend our analysis to include discrete review batch service that mimics

the operation of a ride at an amusement park.

Our approach is to study the asymptotic behavior of the aforementioned system when

demand is large (for example, hundreds of customers arrivals per hour) and service is fast

(for example, the service time of one customer is measured in minutes). In this heavy-tra±c

asymptotic regime, the two dimensional process tracking the number of customers waiting

inline and o≤ine collapses to one dimension. This state-space collapse parallels the result

in Theorem 1 in Section 5 in Reiman (1984) for a join-the-shorter queueing model in which

no customers abandon. However, our one-dimensional limit process is a reflected Ornstein-

Uhlenbeck process (which has state-dependent linear drift), whereas the one-dimensional

limit process in Theorem 2 in Section 5 in Reiman (1984) is a reflected Brownian motion

(which has constant drift). This is significant because both the steady-state and the transient

behavior of the two processes are much diÆerent (Ward and Glynn 2003). For example, it is

well-known that the steady-state distribution of a reflected Brownian motion is exponential

but that of a reflected Ornstein-Uhlenbeck is truncated normal.
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Inline Queue

Offline Queue

server

abandonment 
distribution Exp(γ)

arrival rate λ

service rate = µ

Figure 1: The model

We use the one-dimensional limiting reflected Ornstein-Uhlenbeck process to dynamically

estimate inline and o≤ine waits for each arriving customer. Additionally, it is straightfor-

ward to provide approximations for other performance measures of interest, such as the

steady-state distribution of the number of customers in the inline and o≤ine queues, and the

steady-state probability of abandonment from the o≤ine queue. We evaluate our proposed

approximations using simulation, and find them to be very accurate when the probability a

customer that chooses to wait o≤ine abandons is under 10%.

Of course, as mentioned previously, the performance metrics depend on how capacity

is allocated to each line. Allocation of capacity is therefore an important decision variable.

Hence we further provide a cost model, and use the very analytically tractable approximating

one-dimensional limiting diÆusion to solve an optimization problem that determines how to

allocate capacity between the inline and o≤ine queue.

The remainder of the paper is organized as follows. We first review some relevant liter-

ature. In Section 2, we present our basic model formulation and heavy tra±c asymptotic

regime. We perform our asymptotic analysis in Section 3. We develop approximations for

the discrete event system and test these approximations through simulation in Section 4. In

Section 5, we extend our analysis to include discrete-review service in which customers are

served in batches. Finally, in Section 6, we provide a cost model and optimize the capacity

allocation decision.
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Literature Review

The model we analyze can be viewed as a variant of a join-the-shorter queue model with real-

time delay quotation. Hence the relevant literature falls primarily into two categories: papers

that address delay (or leadtime) quotation in queueing models and papers that analyze join-

the-shorter queue type models. In the first category, a common formulation (see, for example,

Bookbinder and Noor 1985, Keskinocak et al 2001, Hopp and Sturgis 2001, Spearman and

Zhang 1999, Wein 1991) is to minimize average leadtimes subject to some given service

constraint (such as the percentage of customers not served within their quoted leadtime). The

tension these papers model is between having long leadtime quotes that discourage customers

and causing customer dissatisfaction by not serving customers within a promised leadtime.

However, as discussed in Whitt (1999a) for a multi-server system without abandonments

and in Whitt (1999b) for a multi-server system with abandonments in the form of both

balking and reneging, the problem of accurately predicting queueing delays in service systems

is of interest in its own right. Furthermore, having accurate delay prediction improves

customer satisfaction. In contrast to Whitt (1999a)(1999b), in which delay prediction results

often rely on Laplace transformation inversion methods, our focus is on providing a delay

quotation policy for both the inline and o≤ine queues, based on observed queue sizes, that

is asymptotically compliant in the sense of Plambeck, Kumar, and Harrison (2001). That is,

the delay quotes we provide to arriving customers coincide with the waiting times customers

actually experience in our asymptotic regime. We expect from the work of Puhalskii (1994)

that a delay quote for the o≤ine queue that is formed by multiplying the number of customers

in the o≤ine queue that will eventually receive service with the average customer service

requirement asymptotically coincides with actual waiting times. The di±culty is that our

delay quotations must be based on the total number of customers in the o≤ine queue, because

we do not know which ones will abandon and which will not.

In the second category, one of the earlier works on the join-the-shorter queue model is

that of Flatto and McLean (1977), who obtained an exact solution for the generating function

of the stationary distribution in an exponential model having identical service rates for each

queue. Adan et al (1991) extended this analysis to the asymmetric case. The earliest heavy

tra±c results on the join-the-shorter queue model are by Foschini and Salz (1978) for an

exponential model. Results for a join-the-shorter queue model with general inter-arrival and

service times can be found in Reiman (1984) (along with results on several other models

that show state space collapse in a heavy tra±c asymptotic regime). More recent work

(McDonald 1996, Turner 2000) examines the large deviations limit. However, none of this

literature allows for customer abandonments.
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2. Model Formulation

We develop a sequence of generalized join-the-shorter queue queueing systems in which

customer demand becomes large and service is rendered quickly, so that server utilization

approaches unity. In Subsection 2.1, we present our basic system model. In Subsection 2.2,

we describe our heavy tra±c asymptotic regime.

2.1 Basic System Model

The service provider quotes every arriving customer an estimation of the waiting time in the

inline and o≤ine queues. We let WI(t) represent the quote for the inline queue at time t > 0

and WO(t) represent the quote for the o≤ine queue. We assume customers are homogeneous

in their waiting time costs, and let wI and wO be the waiting costs per time unit for the

inline and the o≤ine queues respectively. Then, a customer arriving to the system at time t

minimizes his cost of waiting by joining the inline queue if

wIWI(t) ∑ wOWO(t),

and by joining the o≤ine queue otherwise.

Waiting time quotes must be a function of observed queue-lengths. Suppose that the

length of the inline queue at time t ∏ 0 is QI(t), and that the length of the o≤ine queue is

QO(t). We assume that each arriving customer generates in expectation a workload of µ

°1,

and that the server operates at a unit rate. Then, the expected total amount of processing

required by all the customers in the inline and o≤ine queues is µ

°1
QI(t) and µ

°1
QO(t)

respectively. When customers are present in both queues, the inline queue is processed at

rate Æ, and the o≤ine queue is processed at rate 1 ° Æ. Otherwise, if the inline (o≤ine)

queue is empty, the o≤ine (inline) queue is processed at rate 1. The service provider quotes

a waiting time at time t that coincides with the expected processing time required by all

customers in the queue adjusted by the service rate for each queue, assuming that the queues

will be sharing processing capacity. Specifically, we assume that

WI(t) =
QI(t)

µÆ

and WO(t) =
QO(t)

µ(1° Æ)
.

In general, we expect that the waiting time quote WO(t) will be too high. This is

because not all customers present in the o≤ine queue will receive service. Specifically, each

customer joining the o≤ine queue independently abandons after an exponential amount of

time with mean ∞

°1. However, we will show that in our heavy tra±c asymptotic regime,
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even though the presence of customer abandonment aÆects our proposed queue-length and

waiting time process approximations, such an overestimation is small, because the probability

any individual customer in the o≤ine queue abandons becomes small. (See Theorem 3 for

theoretical support of this statement, and our simulation results in Section 4 for numeric

support.)

Let A, SI , and SO be independent renewal processes having rates ∏, µ, and µ respectively.

A(t) denotes the cumulative number of arrivals to the system in [0, t]. SI(t) and SO(t) denote

respectively the cumulative number of departures from the inline and o≤ine queues after the

server has devoted t units of time to the queue working at rate 1. Let N be an independent,

standard Poisson process. The evolution equations for QI and QO are

QI(t) ¥
A(t)
X

i=1

1{wIWI(ti°) ∑ wOWO(ti°)}° SI(TI(t)) (1)

QO(t) ¥
A(t)
X

i=1

1{wIWI(ti°) > wOWO(ti°)}°N

µ

Z t

0

∞QO(s)ds

∂

°SO(TO(t)), (2)

where

TI(t) ¥
Z t

0

Æ1 {QI(s) > 0}
Æ1 {QI(s) > 0}+ (1° Æ)1 {QO(s) > 0}ds (3)

TO(t) ¥
Z t

0

(1° Æ)1 {QO(s) > 0}
Æ1 {QI(s) > 0}+ (1° Æ)1 {QO(s) > 0}ds. (4)

Define

Q ¥ QI + QO.

We assume the server must work whenever customers are present, and so

I(t) ¥
Z t

0

1 {Q(s) = 0} ds (5)

is the cumulative server idletime. Then,

TI(t) + TO(t) + I(t) = t (6)
Z 1

0

Q(t)dI(t) = 0. (7)
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2.2 The Heavy Tra±c Asymptotic Regime

We consider a sequence of systems, indexed by n, in which the arrival and service rates in the

n

th system are of order n. The abandonment rate ∞, the server-sharing constant Æ, and the

waiting costs wI and wO all remain constant. Our convention is to superscript any process

or quantity associated with the n

th system by n.

Let {ui, i ∏ 1}, {vO
i , i ∏ 1} and {vI

i , i ∏ 1} be three independent, i.i.d. sequences of non-

negative, mean 1 random variables having finite variance. Further assume that {vO
i , i ∏ 1}

and {vI
i , i ∏ 1} all have the same distribution. The cumulative number of arrivals is

A

n(t) ¥ max{i ∏ 0 :
i

X

j=1

uj ∑ n∏

n
t},

so that the arrival rate in the n-th system is n∏

n. The server in the n-th system serves with

rate nµ

n so that the cumulative number of customers served from the inline queue after the

server has worked at rate 1 for t time units is

S

n
I (t) ¥ max{i ∏ 0 :

i
X

j=1

v

I
j ∑ nµ

n
t},

and from the o≤ine queue is

S

n
O(t) ¥ max{i ∏ 0 :

i
X

j=1

v

O
j ∑ nµ

n
t}.
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Define the fluid scaled quantities

Ā

n(t) ¥ 1

n

A

n(t)° ∏

n
t

S̄

n
I (t) ¥ 1

n

S

n
I (t)° µ

n
t

S̄

n
O(t) ¥ 1

n

S

n
O(t)° µ

n
t

N̄

n(t) ¥ 1

n

N(nt)° t

Q̄

n
I (t) ¥ 1

n

Q

n
I (t)

Q̄

n
O(t) ¥ 1

n

Q

n
O(t)

Q̄

n(t) ¥ 1

n

Q

n(t)

ø̄

n(t) ¥ 1

n

Z t

0

∞Q

n
O(s)ds,

and the diÆusion scaled quantities

Ã

n(t) ¥
p

n(
1

n

A

n(t)° ∏

n
t)

Q̃

n
I (t) ¥ 1p

n

Q

n
I (t)

Q̃

n
O(t) ¥ 1p

n

Q

n
O(t)

W̃n
I (t) ¥

p
nWn

I (t)

W̃n
O(t) ¥

p
nWn

O(t)

S̃

n
I (t) ¥

p
n(

1

n

S

n
I (t)° µ

n
t)

S̃

n
O(t) ¥

p
n(

1

n

S

n
O(t)° µ

n
t)

Ĩ

n(t) ¥
p

nI

n(t)

Ñ

n(t) ¥
p

n(
1

n

N(nt)° t)

Note that the queue-lengths are scaled by n

°1/2 and waiting time estimates are scaled by
p

n because queue-lengths become large and waiting times become small in our limit regime.

This is consistent with the limit regime in Reed and Ward (2007).

As n increases,

∏

n ! µ and µ

n ! µ,

where µ 2 <. (Note the slight abuse of notation because µ is no longer the service rate
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introduced in Section 2.1. The service rate in the nth system is nµ

n.) Furthermore, ∏

n and

µ

n become close at rate
p

n; specifically,

p
n(∏n ° µ

n) ! µ, (8)

as n !1, where µ 2 <.

The functional strong law of large numbers establishes

°

Ā

n
, S̄

n
I , S̄

n
O

¢

! (0, 0, 0) a.s., u.o.c., (9)

as n ! 1. Here, the notation “a.s.” denotes “almost surely”, and “u.o.c.”, “uniformly

on compact sets”. Also, note that we let 0 represent both the 0 process as in (9) and the

number 0. The meaning should be clear from the context.

It is useful to observe that the processes Ã

n
, S̃

n
I , and S̃

n
O can be approximated by Brownian

motion. For this, we require the following technicalities. All random variables are defined on

a common probability space (≠,F , P ). For each positive integer d, let D([0,1),<d) be the

space of right continuous functions with left limits (RCLL) in <d having time domain [0,1).

We endow D([0,1),<d) with the usual Skorokhod J1 topology, and let M

d denote the Borel

æ-algebra associated with the J1 topology. All stochastic processes are measurable functions

from (≠,F , P ) into (D([0,1),<d),Md) for some appropriate dimension d. Suppose {ªn}1n=1

is a sequence of stochastic processes. The notation ª

n ) ª means that the probability

measures induced by the ª

n’s on (D([0,1),<d),Md) converge weakly to the probability

measure on (D([0,1),<d), Md) induced by the stochastic process ª. Note that we suppress

d from the notation unless necessary.

Let Bu, BvI
and BvO

be independent, standard Brownian motions. The functional central

limit theorem and the assumed independence of the interarrival and service time sequences

establish
≥

Ã

n
, S̃

n
I , S̃

n
O

¥

)
≥

p

∏var(u1)Bu,

p

µvar(v1)BvI
,

p

µvar(v1)BvO

¥

. (10)

In addition to the functional strong law of large numbers and the functional central limit

theorem, we also reference the continuous mapping, random time change, and converging

together theorems. A convenient reference for these theorems is Billingsley (1999) or Whitt

(2002). We also often use the notation e to denote the identity process

e(t) = t for all t ∏ 0.
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3. Asymptotic Analysis

Our first theorem establishes that the two-dimensional process tracking the number of cus-

tomers waiting in the inline and o≤ine queues collapses to one-dimension in heavy tra±c.

Theorem 1 For any T > 0, sup0∑t∑T |wI

Æ
Q̃

n
I (t)° wO

1°Æ
Q̃

n
O(t)|! 0 in probability as n !1.

The next step is to identify the one-dimensional limit process. In preparation, let B be

a standard Brownian Motion. Let

æ

2 = ∏var(u1) + µvar(vI
1).

Define Z as the strong solution to the stochastic equation

Z(t) = µt° ∞

(1° Æ)wI

ÆwO + (1° Æ)wI

Z t

0

Z(s)ds + æB(t) + L(t) ∏ 0, t ∏ 0, (11)

where L is non-decreasing, L(0) = 0 and
R1

0 Z(t)dL(t) = 0. The constant µ appearing in

equation (11) corresponds to the assumed imbalance between the arrival and service rates

in (8), and the term ∞(1 ° Æ)wI [ÆwO + (1 ° Æ)wI ]°1 arises from customers abandonments

from the o≤ine queue.

The existence of a strong solution to (11) follows because the process Z can be represented

in terms of the following regulator mapping.

Definition 1 (The one-sided linearly generalized regulator mapping)

Given ∑ a non-negative constant and x 2 D([0,1),<) having x(0) ∏ 0, the one-sided

linearly generalized regulator mapping

(¡∑
,√

∑) : D([0,1),<) 7! D([0,1), [0,1)£ [0,1))

is defined by

(¡∑
,√

∑)(x) ¥ (z, l)

where

(C1) z(t) = x(t)° ∑

R t

0 z(s)ds + l(t) 2 [0,1) for all t ∏ 0;

(C2) l is nondecreasing, l(0) = 0, and
R1
0 z(t)dl(t) = 0.
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Specifically, for

∑ ¥ ∞

(1° Æ)wI

ÆwO + (1° Æ)wI

,

it follows that

(Z, L) = (¡∑
,√

∑) (e + æB). (12)

Proposition 3 part (i) in Reed and Ward (2007) establishes the existence and uniqueness

of the regulator mapping in Definition 11, and so the representation (12) guarantees that

there is a unique strong solution to the stochastic equation in (11). Note that when ∑ = 0,

the one-sided linearly generalized regulator mapping is exactly the conventional one-sided

regulator mapping

¡(x)(t) ¥ x(t) + √(x)(t)

√(x)(t) ¥ sup
s2[0,t]

max{°x(s), 0}

introduced in Skorokhod (1961).

Our next theorem establishes that the process Z in (11) approximates the total number

of customers in either the inline or o≤ine queues.

Theorem 2 As n !1,
≥

Q̃

n
, Ĩ

n
¥

) (Z, L).

Together, Theorems 1 and 2 imply a separate approximation for the number of customers

in the inline queue, and for the number of customers in the o≤ine queue. In particular, the

following weak convergence holds

Q̃

n
I )

ÆwO

(1° Æ)wI + ÆwO

Z and Q̃

n
O )

(1° Æ)wI

(1° Æ)wI + ÆwO

Z (13)

as n !1.

Our basic system model presented in Section 2.1 relies on the assumption that the amount

of time a customer joining either the inline or o≤ine queue (assuming he does not abandon)

would wait to receive service at time t can be approximated from the queue-length processes.

It is not obvious that the queue-length of the o≤ine queue can be used to estimate waiting

times because the number of customers that will abandon is not known. However, our next

theorem shows that such an approximation is possible in our heavy tra±c asymptotic regime.

Let W

n
I and W

n
O be the workload processes in the inline and o≤ine queues respectively.

We use the term “workload” to indicate the total processing time of all the customers in the

1
Actually, the regulator mapping in Definition 1 is a specific instance of the more general regulator

mapping in Reed and Ward (2007).
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queue that will eventually receive service when processing occurs at rate 1. Let V

n
I and V

n
O

be the virtual waiting time processes in the inline and o≤ine queues respectively. The virtual

waiting time processes multiplied by Æ and 1 ° Æ respectively coincide with the workload

processes when the server works continuously at rate Æ on the inline queue and rate 1 ° Æ

on the o≤ine queue. Define W̃

n
I =

p
nW

n
I , W̃

n
O =

p
nW

n
O, Ṽ

n
I =

p
nV

n
I , Ṽ

n
O =

p
nV

n
O .

Theorem 3 As n !1,

W̃

n
I )

ÆwO

(1° Æ)wI + ÆwO

Z

µ

and W̃

n
O )

(1° Æ)wI

(1° Æ)wI + ÆwO

Z

µ

. (14)

Furthermore, for any T > 0, as n !1,

sup
0∑t∑T

Ø

Ø

Ø

Ø

Ø

Ṽ

n
I (t)° W̃

n
I (t)

Æ

Ø

Ø

Ø

Ø

Ø

! 0 and sup
0∑t∑T

Ø

Ø

Ø

Ø

Ø

Ṽ

n
O (t)° W̃

n
O(t)

1° Æ

Ø

Ø

Ø

Ø

Ø

! 0, (15)

in probability, which implies that, as n !1,

sup
0∑t∑T

Ø

Ø

Ø

Ṽ

n
I (t)° W̃n

I (t)
Ø

Ø

Ø

! 0 and sup
0∑t∑T

Ø

Ø

Ø

Ṽ

n
O (t)° W̃n

O(t)
Ø

Ø

Ø

! 0,

in probability.

Note that delay quotations are based on observed queue-lengths, which include aban-

doning customers, but that the workload and virtual waiting time processes do not include

abandoning customers. Hence in our asymptotic regime it is possible to provide accurate

delay quotations based on observed queue-lengths.

4. Approximations for the Original Model

In this section we develop approximations for steady-state performance measures for the

original model, and test their accuracy through simulation (performed using the Extend

simulation language ). In Subsection 4.1, we use Theorems 1 through 3 to find closed-

form expressions for expected steady-state queue-lengths, wait times, and the probability

of abandonment from the o≤ine queue and from the system. We show the results of our

simulation study in Subsection 4.2.
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4.1 Steady-State Approximations

Theorems 1 through 3 suggest that for any positive integer m

E [Qn
I (1)m] º

p
n

ÆwO

(1° Æ)wI + ÆwO

E[Z(1)m], (16)

E [Qn
O (1)m] º

p
n

(1° Æ)wI

(1° Æ)wI + ÆwO

E[Z(1)m]

E [W n
I (1)m] º 1p

n

ÆwO

(1° Æ)wI + ÆwO

E[Z(1)m]

µ

E [W n
O (1)m] º 1p

n

(1° Æ)wI

(1° Æ)wI + ÆwO

E[Z(1)m]

µ

,

where Q

n
I (1), Q

n
O(1), W

n
I (1), W

n
O(1), and Z(1) are random variables that have the

steady-state distribution of the processes Q

n
I , Q

n
O, and Z respectively2. Next, Proposition

18.3 in Browne and Whitt (1995) shows that for ¡ and © the density and cumulative distri-

bution functions respectively of a standard normal random variable, and

∑ ¥ ∞

(1° Æ)wI

ÆwO + (1° Æ)wI

,

as in Section 3, the first and second moments of the steady-state distribution of the process

Z are

E [Z(1)] =
µ

∑

+
æp
2∑

¡

≥

°µ
æ

q

2
∑

¥

1° ©
≥

°µ
æ

q

2
∑

¥

E

£

Z(1)2
§

=

µ

µ

∑

∂2

+
æ

2

2∑
+

µæ

∑

p
2∑

¡

≥

°µ
æ

q

2
∑

¥

1° ©
≥

°µ
æ

q

2
∑

¥ .

Let p

n
O denote the steady-state probability that a customer who joins the o≤ine queue

abandons. To approximate p

n
O, first observe that the probability an infinitely patient cus-

tomer arriving to the o≤ine queue abandons when his wait for service is w is

1° exp (°∞w)

Hence, because W

n
O(t)/µ(1 ° Æ) is the approximate waiting time for service at the o≤ine

queue at time t, we expect that, for large t, assuming the process W

n
O is operating in steady

2
Note that the proposed approximations assume limits can be taken either first as n ! 1 and then

as t ! 1 or first as t ! 1 and then n ! 1, which has been proves rigorously for feedforward Jackson

networks by Gamarnik and Zeevi (2006).
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state,

R t

0

≥

1° exp
≥

°∞

W n
O(s)

µ(1°Æ)

¥¥

dA

n(s)

A

n(t)
=

R t

0

≥

1° exp
≥

°∞

W n
O(s)

µ(1°Æ)

¥¥

d(An(s)/∏n
n)

A

n(t)/∏n
n

is close to the steady-state abandonment probability for a customer joining the o≤ine queue.

Note that A

n
/n∏

n ! e u.o.c., a.s. as n !1 and that for any x 2 <,

p
n

µ

1° exp

µ

° xp
n

∂∂

! x

n !1. Then, multiplying by
p

n (because the probability an individual customer abandons

becomes small in our heavy tra±c asymptotic regime) and using Theorem 3 suggests that

p
n

R t

0

≥

1° exp
≥

°∞

W n
O(s)

µ(1°Æ)

¥¥

d(An(s)/∏n
n)

A

n(t)/∏n
n

! ∞

µ

2(1° Æ)

(1° Æ)wI

(1° Æ)wI + ÆwO

R t

0 Z(s)ds

t

,

as n !1. (This argument can be made rigorous using the Skorohod representation theorem

and Lemma 8.3 in Dai and Dai (1999), as shown in a similar argument in Subsection 5.1.2

in Reed and Ward (2007).) Finally, the strong law for regenerative processes implies that

R t

0 Z(s)ds

t

! E [Z(1)]

as t !1. We conclude that

p

n
O º

1p
n

∞

µ

2(1° Æ)

(1° Æ)wI

(1° Æ)wI + ÆwO

E [Z(1)] . (17)

It is also possible to approximate the probability that an arbitrary customer arriving to

the system abandons. In heavy-tra±c, the inline and the o≤ine queues are rarely empty,

meaning that the inline queue receives Æ of the server’s processing capacity and the o≤ine

queue receives 1 ° Æ. Consequently the fraction of arriving customers who join the o≤ine

must equal
1° Æ

(1° Æ) + Æ(1° p

n
O)

and so
1

(1° Æ) + Æ(1° p

n
O)

∞p
nµ

2

(1° Æ)wI

(1° Æ)wI + ÆwO

E [Z(1)]

represents the probability that an arbitrary customer arriving to the system abandons.
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4.2 Evaluation of the Approximations

Our first simulation study investigates the accuracy of our approximations in equations

(16) and (17) as arrival and service rates become large. Specifically, Table 1 considers a

balanced system (Æ = 0.5) in which customers are indiÆerent between the two modes of

service (wI = wO = 1). Then we expect the inline and o≤ine queue-lengths to be equal, and

so the reported % error for the first and second moment approximations of the number of

customers in the inline and o≤ine queue is the maximum of the errors associated with the

two simulated values. The accuracy of the first and second moment approximations for the

number of customers in the inline and o≤ine queues is high (under 10%) when p

n
O is under

0.1, and the accuracy of the second moment approximation is high when p

n
O is under 0.05.

Because the steady-state distribution of the limit process Z is a truncated normal, a good

approximation of the first and second moments of the queue-length process suggests that

their entire steady-state distribution is well-approximated.

pn
O First Moment Second Moment

n ∞p
n
E[Z(1)] Error

p
n

2 E[Z(1)] Max.Error

p
n

2 E[Z(1)

2
] Max.Error

10 0.252 5.99% 1.262 18.6% 2.5 54.6%

100 0.080 4.37% 3.989 8.3% 25 15.54%

1,000 0.025 0.01% 12.62 4.62% 250 7.22%

10,0000 0.008 4.09% 39.89 3.00% 2500 6.36%

100,0000 0.003 0.96% 126.16 0.96% 25,000 2.71%

Table 1: A comparison of the approximated o≤ine queue abandonment probability, and the
first and second moments of the number of customers in the inline and o≤ine queues to a
simulation having Poisson arrivals with rate n per time unit, deterministic service with mean
1/n, and parameters Æ = 0.5, ∞

°1 = 1, and wI = wO = 1.

All simulation runs shown in Table 1, and in every table in this paper, are run long

enough to generate 10,000,000 arrivals. This ensures that the system has settled into its

steady-state.

Recall that the waiting time approximations we provide to customers for the o≤ine queue

rely on assumption that estimated wait times for the o≤ine queue can be approximated from

the o≤ine queue-length, and that Theorem 2 validates this assumption. One consequence of

this assumption should be that the diÆerence between the expected wait in the o≤ine queue

conditional on receiving service and the unconditional wait is very small when arrival and

service rates are large. Table 2 verifies via simulation that this is indeed the case.
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Approximated Wait Simulated Wait (%Error)

n p

n
O

E[Z(1)]p
n

Serviced Customers All Customers

10 0.252 0.252 0.268 (5.97%) 0.297 (14.92%)
100 0.080 0.080 0.083 (4.32%) 0.086 (6.73%)

1,000 0.025 0.025 0.0252 (0.08%) 0.0254 (0.5%)
10,0000 0.008 0.008 0.00772 (3.39%) 0.00773 (3.21%)
100,0000 0.003 0.003 0.00255 (1.00%) 0.00255 (1.02%)

Table 2: A comparison of the unconditional and conditional (on receiving service) waiting
times in the o≤ine queue to a simulation having Poisson arrivals with rate n per time unit,
deterministic service with mean 1/n, and parameters Æ = 0.5, ∞

°1= 1, and wI = wO = 1.

pn
O E[inline queue-length] E[o≤ine queue-length]

Æ Approximated Error Approximated Error Approximated Error

0.0 0.0056 5.57% 0.00 N/A 56.42 5.52%

0.1 0.0059 3.61% 5.95 0.21% 53.52 4.69%

0.2 0.0063 5.33% 12.62 4.54% 50.46 5.89%

0.3 0.0067 2.87% 20.23 3.47% 47.20 2.57%

0.4 0.0073 1.68% 29.13 1.20% 43.70 1.29%

0.5 0.0080 4.29% 39.89 6.36% 39.89 5.24%

0.6 0.0089 4.98% 53.52 3.69% 35.68 4.66%

0.7 0.0103 1.57% 72.10 2.88% 30.90 1.88%

0.8 0.0126 0.82% 100.92 3.41% 25.23 1.72%

0.9 0.0178 9.73% 160.57 5.82% 17.84 8.58%

Table 3: A comparison for varying Æ of the approximated probability of abandonment and
expected number of customers in inline and o≤ine queues to a simulation having Poisson
arrivals with rate 100 per time unit, deterministic service with mean 0.01, and parameters
∞

°1 = 0.01, and wI = wO = 1.

Tables 1 and 2 are suggestive of the eÆect ∞ has on the accuracy of our approximations.

Specifically, the accuracy increases as the mean abandonment time becomes large compared

to service times. It is the ratio of the two rather than the exact value that is important.

Hence we do not include a study of how the approximation accuracy varies with ∞.

Finally, we investigate the impact of capacity allocation on the accuracy of our proposed

approximation. Specifically, we vary Æ between 0 and 1. Table 3 shows that there is no

correlation between the value of Æ and the accuracy of our proposed approximations. Note

that the value Æ = 1 is not included because the system is unstable without abandonments.

When µ = 0, it is straightforward to show that
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d

dÆ

ÆwO

(1° Æ)wI + ÆwO

E[Z(1)]

=
æp
º

p
∞

wIwO

((1° Æ)wI + ÆwO)2

√

° (1°Æ)wI

ÆwO+(1°Æ)wI

¢1/2

+1
2

ÆwO

(1°Æ)wI+ÆwO

° (1°Æ)wI

ÆwO+(1°Æ)wI
)
¢°3/2

!

> 0

and

d

dÆ

(1° Æ)wI

(1° Æ)wI + ÆwO

E[Z(1)]

= ° æ

2
p

º

p
∞

wIwO

((1° Æ)wI + ÆwO)2

µ

(1° Æ)wI

ÆwO + (1° Æ)wI

∂1/2

< 0.

Hence we expect that as more capacity is devoted to the o≤ine queue (i.e., as Æ increases),

the number of customers present in the ofline queue also increases. In other words, customers

will tolerate longer inline queue-lengths before choosing to go o≤ine when more server eÆort

is devoted to the inline queue. This is because the same number of customers at the inline

queue results in a shorter wait time when the server devotes more eÆort to the inline queue.

Table 3 verifies this intuition.

5. A Batch Processor with Discrete Service Start Times

In some applications settings, a fixed number of customers are served at set time intervals.

For example, an amusement park ride departs at deterministically spaced intervals, and can

carry only a certain number of customers. Hence it is desirable to extend our analysis to

include situations in which customers are served in batches only at certain time points. We

extend our analysis in Subsection 5.1, and, in Subsection 5.2, test its validity via simulation

using parameters from a ride that opened in Summer 2006 at Six Flags Magic Mountain,

Tatsu.

5.1 Discrete Review Model Formulation

We modify our service process to be discrete-review. Otherwise, the evolution equations for

the queue-length processes in (1) and (2) continue to hold. We again consider a sequence

of systems, indexed by n, in which the arrival process in the nth system has rate n∏

n, and
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is defined exactly as in Subsection 2.2. In a slight abuse of notation, we again use S

n
I and

S

n
O to denote the cumulative departure processes from the inline and o≤ine queues, even

though the service processes are no longer renewal. The reader is to understand that in this

Section, S

n
I and S

n
O refer to the processes defined below.

Let

l

n ¥
µ

1

n

∂2/3

,

and assume service occurs only at discrete review time points l

n
, 2ln, 3ln, . . . . No service

occurs in between discrete review time points. Assume n

1/3
µ

n customers can be processed

in l

n units of time so that the processing rate is n

1/3
µ

n
/l

n = nµ

n customers per unit time.3

The service process is defined recursively as follows. At time 0, no customers have been

serviced so that

S

n
I (0) = S

n
O(0) = 0.

Next, observe that when the cumulative number of customers processed up to time (i° 1)ln

in the inline and o≤ine queues is S

n
I ((i° 1)ln) and S

n
O((i° 1)ln) respectively, then because

no customers are processed in between discrete review time points,

Q

n
I (iln°) = Q

n
I ((i° 1)ln) +

An(iln)
X

i=An((i°1)ln)+1

1

Ω

wI

µÆ

Q

n
I (tni°) ∑ wO

µ(1° Æ)
Q

n
O(tni°)

æ

Q

n
O(iln°) = Q

n
O((i° 1)ln) +

An(iln)
X

i=An((i°1)ln)+1

1

Ω

wI

µÆ

Q

n
I (tni°) >

wO

µ(1° Æ)
Q

n
O(tni°)

æ

°N

µ

Z iln

0

∞Q

n
O(s)ds

∂

+ N

√

Z (i°1)ln

0

∞Q

n
O(s)ds

!

.

Then,

S

n
I (iln) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

n
I ((i° 1)ln) + bÆn

1/3
µ

nc Q

n
I (iln°) ∏ bÆn

1/3
µ

nc

+

√

£

d(1° Æ)n1/3
µ

ne °QO(iln°)
§+

^
°

Q

n
I (iln°)° bÆn

1/3
µ

nc
¢

!

S

n
I ((i° 1)ln) + Q

n
I (iln°) Q

n
I (iln°) < bÆn

1/3
µ

nc

(18)

3
The choice of n°2/3

as a discrete review time period is somewhat arbitrary. The analysis in this section

continues to hold for ln = n°Ø
for any 1/2 < Ø < 1 when n1°Øµn

is the number of customers processed in

ln units of time.
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and

S

n
O(iln) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

n
O((i° 1)ln) + d(1° Æ)n1/3

µ

ne Q

n
O(iln°) ∏ d(1° Æ)n1/3

µ

ne

+

√

£

bÆn

1/3
µ

nc °Q

n
I (iln°)

§+

^
°

Q

n
O(iln°)° d(1° Æ)n1/3

µ

ne
¢

!

S

n
O((i° 1)ln) + Q

n
O(iln°) Q

n
O(iln°) < d(1° Æ)n1/3

µ

ne

(19)

We expect that the discrete review system behaves similarly to the continuous time

system. Our next proposition shows that Theorems 1 through 3 remain valid for the discrete

review system. Its proof can be found in the appendix.

Proposition 1 The results of Theorems 1 through 3 continue to hold when the service pro-

cess is defined as in (18)-(19). The process Z appearing in Theorems 2 and 3 again solves

the stochastic equation (11) but has infinitesimal variance æ

2 = ∏var(µ1).

5.2 Application to the Tatsu Ride

Tatsu is a roller coaster ride at Magic Mountain Park. Each train in this ride has a capacity of

32 passengers, and approximately 1600 customers can take this ride in an hour (Tatsu 2007).

Roughly once every 72 seconds a new train departs. We use our proposed approximations to

predict queue-lengths when the Tatsu ride operates with both an inline and an o≤ine queue.

E[Queue Size] Simulated (E[Qn
I ], E[Qn

O]) / Max. Error

n∏n p
nE[Z(1)] W/out Batching With Batching

1600 31.92 (31.51, 31.01) / 2.93% (36.53, 36.03) / 12.64%

1610 51.50 (52.44, 51.93) / 1.78% (55.55, 55.04) / 7.29%

1620 82.21 (82.95, 82.43) / 0.89% (87.01, 86.50) / 5.52%

1630 120.18 (126.53, 126.00) / 5.02% (127.69, 127.17) / 5.88%

1640 160.01 (154.23, 153.70) / 4.10% (158.82, 159.29) / 1.08%

1650 200.00 (200.34, 199.80) / 0.16% (201.54, 201.01) / 0.76%

Table 4: A comparison of the expected inline and o≤ine queue sizes to a simulation having
Poisson arrivals at a rate n∏

n, service capacity nµ

n = 1600 customers per hour, ∞

°1 = 4
hours, Æ = 0.5, and wI = wO = 1 for (i) a system with continuous service, and (ii) a system
with discrete-review service.

We parameterize the Tatsu ride in time units of hours as follows. Let µ

n = 1 for all

n, and n = 1600 so that the service rate is 1600 passengers per hour. The Tatsu ride was

very popular the first summer it opened, and generally had long queues. Hence Table 4

investigates the performance of our approximations when the arrival rate to the ride n∏

n

exceeds the service rate. For the remaining parameters, we assume that the mean time a
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customer in the o≤ine queue spends in the park before deciding not to ride Tatsu is ∞

°1 = 4

hours, or approximately half the opening time of the park in a day. Furthermore, when

there are enough customers in the two queues, exactly 16 passengers are taken from the

inline queue and 16 from the o≤ine queue so that Æ = 0.5. Finally, customers are indiÆerent

between the two modes of service wI = wO = 1.

Table 4 evidences the validity of our approximation for a discrete-review system. In

particular, as established in Proposition 1, the diÆerence between continuous and discrete-

review service is small.

6. Revenue Optimization

For a designated split Æ of server eÆort between the inline and o≤ine queues, we have

developed approximations for the queue-length and waiting time processes when arrival and

service rates are large, and performed simulation studies to verify their accuracy. We are

now in a position to address the question: what is the optimum Æ? We conclude our paper

by presenting an example cost model, and showing how to find the Æ that minimizes average

cost.

There is a cost c associated with any customer that abandons. The cost could be a refund

for a service not rendered or, as in the amusement park setting, could represent an expected

future revenue loss due to the customer being less likely to return at a later date and pay for

more service. Also, there is a holding cost hI 2 < per customer in the inline queue, and a

holding cost hO 2 < per customer in the o≤ine queue. Note that we allow hI and hO to be

negative to allow for the case that customers in queue can generate revenue. For example,

in an amusement park setting, customers in the o≤ine queue may purchase food and spend

money on entertainment, so that the holding cost hO is actually a revenue generated per

customer while wandering around the park. Then, the total cost after t time units in the

system having arrival and service rates of order n is

Cn(t) ¥ cN

µ

Z t

0

∞Q

n
O(s)ds

∂

+

Z t

0

hIQ
n
I (s)ds +

Z t

0

hOQ

n
O(s)ds.

Our objective is to minimize infinite horizon average cost

min
Æ2[0,1]

lim
t!1

1

t

Cn(t).

(Note that we expect the limit to exist for any Æ 2 [0, 1] because we expect that the system

is positive recurrent.) The problem as stated is intractable. However, when n is large, we
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can utilize the approximations for the queue-length processes suggested by Theorem 2. To

do this, because queue-lengths in the nth system are of order
p

n, Cn(t) is also of order
p

n

for any finite t. Hence we must divide Cn by
p

n.

An ideal alternative (tractable) objective is

min
Æ2[0,1]

lim
n!1

lim
t!1

1

t

Cn(t)p
n

.

However, this alternative proves di±cult because in order to use the approximating process

Z, the limit must first be taken as n !1 and second be taken as t !1. Hence we utilize

the alternative objective

min
Æ2[0,1]

lim
t!1

lim
n!1

1

t

Cn(t)p
n

. (20)

Observe that

Cn(t)p
n

= c

∑

Ñ

n (øn(t)) + ∞

Z t

0

Q̃

n
O(s)ds

∏

+

Z t

0

hIQ̃
n
I (s)ds +

Z t

0

hOQ̃

n
O(s)ds.

Define

C(t) =

∑

(c∞ + hO)
(1° Æ)wI

(1° Æ)wI + ÆwO

+ hI
ÆwO

(1° Æ)wI + ÆwO

∏

Z t

0

Z(s)ds.

By the same argument directly following (26) in the proof of Theorem 1, Ñ

n ± ø

n ) 0,

as n ! 1. Hence, Theorems 1 and 2 (specifically, the weak convergence in (13)) and the

continuous mapping theorem show
Cn

p
n

) C,

as n !1. As in Subsection 4.1

R t

0 Z(s)ds

t

! E[Z(1)],

where Z(1) has the steady-state distribution of the process Z given in (17). We conclude

that the objective in (20) is equivalently expressed as

min
Æ2[0,1]

µ

(c∞ + hO)(1° Æ)wI

(1° Æ)wI + ÆwO

+
hI ÆwO

(1° Æ)wI + ÆwO

∂

0

B

@

µ

∑

+
æp
2∑

¡

≥

°µ
æ

q

2
∑

¥

1° ©
≥

°µ
æ

q

2
∑

¥

1

C

A

. (21)
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The optimization problem in (21) minimizes a continuous function over a bounded region,

and so is solvable numerically.

For intuition, we solve (21) in the case that customer waiting costs are identical for each

queue wI = wO = 1, and there is exact balance between the arrival and service rates so

that µ = 0. To relate back to the amusement park setting, we assume hI ∏ 0, hO < 0, and

c∞ + hO > 0. In this simplified setting, (21) becomes

min
Æ2[0,1]

f(Æ), (22)

where

f(Æ) =
æp
º

p
∞

1
p

(1° Æ)
(c∞ + hO + Æ(hI ° c∞ ° hO))

is a non-negative function in the interval [0, 1]. The function f has first derivative

f

0(Æ) =
æp
º

p
∞

(1° Æ)°3/2

µ

hI °
1

2
(c∞ + hO)° 1

2
Æ(hI ° c∞ ° hO)

∂

,

and second derivative

f

00(Æ) =
æp
º

p
∞

(1° Æ)°5/2

µ

hI °
1

4
(c∞ + hO)° 1

4
Æ(hI ° c∞ ° hO)

∂

.

To guarantee a solution Æ

? 2 (0, 1), we require the condition

0 < hI <

1

2
(c∞ + hO) . (23)

When hI = 0, f(1) = 0, the minimum achievable cost, and so Æ

? = 1. In other words, it is

optimum to maintain only an inline queue. In the case that hI ∏ 2°1(c∞ + hO), it follows

that f

0(Æ) ∏ 0 for all Æ 2 [0, 1]. Then, the minimum achievable cost occurs at Æ

? = 0, and so

having only an o≤ine queue is optimum. Otherwise, when condition (23) is satisfied, solving

f

0(Æ) = 0 shows

Æ

? =
2
°

1
2(c∞ + hO)° hI

¢

c∞ + hO ° hI

.

Since f

0(0) < 0 when hI < 2°1(c∞ + hO), it follows that f

0(0) > f(Æ?). Furthermore,

f(Æ) !1 as Æ " 1, and so f(Æ?) ∑ f(Æ) for all Æ 2 [0, 1].

Finally, it is interesting to compare the solution to our optimization problem in (22) to

the solution for the case that there is no abandonment. Then, similar to the setting in Section

5 in Reiman (1984) (the diÆerence being that his setting has 2 servers with equal service

rates instead of a single server with processor-sharing), Theorems 1 and 2 hold except that
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the process Z is a reflected Brownian motion with drift µ and variance æ

2. When µ < 0, the

steady-state mean of Z is æ

2
/µ. (See, for example, equation (12) in Section 5.6 in Harrison

(1985).) Hence, the objective (21) becomes

min
Æ2[0,1]

æ

2

2|µ| (hO(1° Æ) + hIÆ)

when wI = wO = 1 and µ = 0. The solution is “bang-bang”: when hI < hO, the minimum

occurs at Æ = 1, and at Æ = 0 when hI > hO
4. We conclude that it is the presence of

abandonments that causes the system manager to want to maintain both an inline queue

and a o≤ine queue.

Appendix

The proofs of Theorems 1-3 require the following two Lemmas, whose proofs we defer to the

end of the appendix.

Lemma 1 Let W

n = W

n
I + W

n
O. As n !1,

°

Q̄

n
, W̄

n
, ø̄

n
, T̄

n
I + T̄

n
O, Ī

n
¢

! (0, 0, 0, e, 0) , a.s., u.o.c..

Lemma 2 For any T > 0 and ≤ > 0, there exists B and n0 such that

P

µ

sup
0∑t∑T

Q̃

n(t) > B

∂

< ≤

for all n ∏ n0.

Proof of Theorem 1

The structure of our proof follows the proof of Theorem 1 in Section 5 in Reiman (1984),

which establishes state-space collapse for a join the shorter queue system in heavy tra±c

with no abandonments. However, more delicate argument is required to handle the customer

abandonments.

We need to show that for any ≤ > 0,

P

µ

sup
0∑t∑T

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

> ≤

∂

! 0 as n !1. (24)

4
The case that hI = hO is degenerate in the sense that the cost function no longer depends on Æ, and so

any Æ 2 [0, 1] achieves minimum cost.
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Fix ≤ > 0 and let

ªn ¥ inf

Ω

t ∏ 0 :

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

> ≤

æ

ª

§
n ¥ sup

Ω

t ∑ ªn :

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

∑ ≤

2

æ

.

It will also be useful to define the processes

Ũ

n
1 (t, s, u, v) ¥ °wI

Æ

n

S̃

n
I (u + Æ(t° s))° S̃

n
I (u)

o

+
wO

1° Æ

n

S̃

n
O (v + (1° Æ)(t° s))° S̃

n
O(v)

o

° wO

1° Æ

n

Ã

n(t)° Ã

n(s)
o

+

Ω

wO

1° Æ

(µn ° ∏

n)° µ

n

µ

wI +
Æ

1° Æ

wO

∂æp
n(t° s)

Ũ

n
2 (t, s, u, v) ¥ ° wO

1° Æ

n

S̃

n
O(v + (1° Æ)(t° s))° S̃

n
O(v)

o

+
wI

Æ

n

S̃

n
I (u + Æ(t° s))° S̃

n
I (u)

o

°wI

Æ

n

Ã

n(t)° Ã

n(s)
o

+

Ω

wI

Æ

(µn ° ∏

n)° µ

n

µ

1° Æ

Æ

wI + wO

∂æp
n(t° s).

An upper bound for the left-hand-side of (24)

First assume wIQ̃
n
I (ª§n) /(µÆ) > wOQ̃

n
O (ª§n) /(µ(1 ° Æ)). Then, for ª

§
n ∑ t ∑ ªn, all

customers join the o≤ine service queue, and so

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

=
wI

Æ

Q̃

n
I (ª§n°)° wO

1° Æ

Q̃

n
O (ª§n°)° wI

Æ

1p
n

{Sn
I (T n

I (t))° S

n
I (T n

I (ª§n°))}

+
wO

1° Æ

1p
n

{Sn
O(T n

O(t))° S

n
O(T n

O(ª§n°))}+
wO

1° Æ

1p
n

N

µ

Z t

ª§n°
∞Q

n
O(s)ds

∂

° wO

1° Æ

n

Ã

n(t)° Ã

n(ª§n°) +
p

n∏

n(t° ª

§
n)

o

. (25)

The inline queue does not become empty during [ª§n, ªn], so that

T

n
I (t)° T

n
I (ª§n°) ∏ Æ(t° ª

§
n).
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The o≤ine queue may become empty during [ª§n, ªn], so that

T

n
O(t)° T

n
O(ª§n°) ∑ (1° Æ)(t° ª

§
n).

Since S

n
I and S

n
O are non-decreasing processes,

S

n
I (T n

I (t))° S

n
I (T n

I (ª§n°))

∏ S

n
I (T n

I (ª§n°) + Æ(t° ª

§
n))° S

n
I (T n

I (ª§n°))

=
p

n

h

S̃

n
I (T n

I (ª§n°) + Æ(t° ª

§
n))° S̃

n
I (T n

I (ª§n°)) + Æ

p
n(t° ª

§
n)

i

,

and

S

n
O(T n

O(t))° S

n
O(T n

O(ª§n°))

∑ S

n
O(T n

O(ª§n°) + (1° Æ)(t° ª

§
n))° S

n
O(T n

O(ª§n°))

=
p

n

h

S̃

n
O (T n

O(ª§n°) + (1° Æ)(t° ª

§
n))° S̃

n
O (T n

O(ª§n°)) + (1° Æ)
p

n(t° ª

§
n)

i

.

The definition of ª

§
n and substitution of the above upper bounds into (25) establish

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

∑ ≤

2
+ Ũ

n
1 (t, ª§n°, T

n
I (ª§n°), T n

O(ª§n°)) +
wO

1° Æ

1p
n

N

µ

Z t

ª§n°
∞Q

n
O(s)ds

∂

.

When wIQ̃
n
I (ª§n) /(µÆ) ∑ wOQ̃

n
O (ª§n) /(µ(1° Æ)), a similar argument shows

Ø

Ø

Ø

Ø

wO

1° Æ

Q̃

n
O(t)° wI

Æ

Q̃

n
I (t)

Ø

Ø

Ø

Ø

∑ ≤

2
+ Ũ

n
2 (t, ª§n°, T

n
I (ª§n°), T n

O(ª§n°))° wO

1° Æ

1p
n

N

µ

Z t

ª§n°
∞Q

n
O(s)ds

∂

.

Also noting the process N is non-negative, we conclude

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

∑ ≤

2
+ max

n

Ũ

n
1 (t, ª§n°, T

n
I (ª§n°), T n

O(ª§n°)), Ũn
2 (t, ª§n°, T

n
I (ª§n°), T n

O(ª§n°)
o

+
wO

1° Æ

1p
n

N

µ

Z T

0

∞Q

n
O(s)ds

∂

.
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Therefore, the left-hand side of (24) can be bounded as follows

P

µ

sup
0∑t∑T

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

> ≤

∂

(26)

∑ P

√

sup0∑s∑t∑T sup0∑u,v∑s max
n

Ũ

n
1 (t, s, u, v), Ũn

2 (t, s, u, v)
o

+ wO

1°Æ
1p
n
¶n

≥

R T

0 ∞Q

n
O(s)ds

¥

>

≤

2

!

.

Convergence of the right-hand-side of (26) to zero

Let ¥ be arbitrarily small. Observe that

1p
n

N

µ

Z T

0

∞Q

n
O(s)ds

∂

= Ñ

n (ø̄n(T )) + ∞

Z T

0

Q̃

n
O(s)ds

From Lemma 1,we know that ø̄

n ! 0 as n ! 1 a.s., u.o.c. The functional central limit

theorem establishes that Ñ

n weakly converges to a Brownian Motion as n ! 1. Since ø

n

is a non-decreasing process, the random time change theorem implies that Ñ

n ± ø̄

n weakly

converges to the zero process. Therefore, Ñ

n (øn(T )) ) 0 as n !1. Since weak convergence

to a constant is equivalent to convergence in probability and
R T

0 Q̃

n
O(y)dy is stochastically

bounded due to Lemma 2, there exists M and n0 large enough so that

P

µ

wO

1° Æ

1p
n

N

µ

Z T

0

∞Q

n
O(s)ds

∂

> M

∂

<

¥

2

for all n ∏ n0.

The processes Ã

n, S̃

n
I , and S̃

n
O all weakly converge to Brownian motions by the functional

central limit theorem. The heavy tra±c assumption (8) implies that for any t > s, as n !1,

µ

wO

1° Æ

(µn ° ∏

n)° µ

n

µ

wI +
Æ

1° Æ

wO

∂∂p
n(t° s) ! °1

µ

wI

Æ

(µn ° ∏

n)° µ

n

µ

1° Æ

Æ

wI + wO

∂∂p
n(t° s) ! °1.

Therefore, an argument analogous to the proof of Theorem 3.2 in Reiman (1984) shows that

there exists m0 such that for all n > m0

P

µ

sup
0∑s∑t∑T

sup
0∑u,v∑s

max
n

Ũ

n
1 (t, s, u, v), Ũn

2 (t, s, u, v)
o

+ M >

≤

2

∂

< ¥.
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We conclude that for all n > n0 _m0

P

µ

sup
0∑s∑t∑T

sup
0∑u,v∑s

max
n

Ũ

n
1 (t, s, u, v), Ũn

2 (t, s, u, v)
o

+
wO

1° Æ

1p
n

N

µ

Z T

0

∞Q

n
O(s)ds

∂

>

≤

2

∂

∑ P

µ

sup
0∑s∑t∑T

sup
0∑u,v∑s

max
n

Ũ

n
1 (t, s, u, v), Ũn

2 (t, s, u, v)
o

+ M >

≤

2

∂

+ P

µ

wO

1° Æ

1p
n

N

µ

Z T

0

∞Q

n
O(s)ds

∂

>

≤

2

∂

<

¥

2
+

¥

2
= ¥.

Proof of Theorem 2

Define

X̃

n(t) ¥ Ã

n(t)° S̃

n
I (T n

I (t))° S̃

n
O (T n

O(t))° Ñ

n (øn(t)) +
p

nt (∏n ° µ

n)

≤̃

n(t) ¥ ∞

Z t

0

µ

(1° Æ)wI

ÆwO + (1° Æ)wI

Q̃

n(s)° Q̃

n
O(s)

∂

ds.

Then, for all t ∏ 0,

Q̃

n(t) = X̃

n(t) + ≤̃

n(t)° (1° Æ)wI

ÆwO + (1° Æ)wI

∞

Z t

0

Q̃

n(s)ds + Ĩ

n(t) ∏ 0.

Since also Ĩ

n is non-decreasing, Ĩ

n(0) = 0, and

Z 1

0

Q̃

n(t)dĨ

n(t) =

Z 1

0

µ

n

n

Q

n(t)1{Qn(t) = 0}dt = 0,

it follows that
≥

Q̃

n
, µ

n
Ĩ

n
¥

¥ (¡∑
,√

∑)
≥

X̃

n + ≤̃

n
¥

. (27)

Let B be a standard Brownian motion. Suppose we can show

X̃

n ) æB + µe,

as n !1. By the continuous mapping theorem and Theorem 1,

≤̃

n ) 0,

as n !1. Proposition 4 part (iii) in Ward and Kumar (2007) establishes that the mapping
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(¡∑
,√

∑) is continuous. Therefore, by the continuous mapping theorem

(¡∑
,√

∑)
≥

X̃

n + ≤̃

n
¥

) (¡∑
,√

∑) (æB + µe) ,

as n !1. The representation (Z, L) in terms of the one-sided linearly generalized regulator

mapping in (27) shows (Z, L) = (¡∑
, √

∑)(æB + µe), and so

≥

Q̃

n
, µ

n
Ĩ

n
¥

) (Z,L)

as n !1.

The sequence {(T n
O, T

n
I )} is tight in D because |T n

I (t) ° T

n
I (s)| ∑ |t ° s| and |T n

O(t) °
T

n
O(s)| ∑ |t° s|. Consider any subsequence {nk} on which

(T nk
O , T

nk
I ) ) (TO, TI)

as nK !1. By Lemma 1, the limit process satisfies

TO + TI = e.

Let B1, B2, and B3 be independent, standard Brownian motions. On the subsequence {nk},
by the functional central limit theorem, continuous mapping theorem, and the heavy tra±c

assumption (8)

Ã

nk(t)° S̃

nk
I (T nk

I (t))° S̃

nk
O (T nk

O (t)) +
p

nkt (∏nk ° µ

nk)

)
p

var(u1)B1 °
q

var(vI
1)B2 ± TI °

q

var(vO
1 )B3 ± TO + µe,

as nk !1. By the same argument directly following (26) in the proof of Theorem 1,

Ñ

nk ± ø

nk(t) ) 0,

as nk !1. Therefore,

X̃

nk )
p

var(u1)B1 °
q

var(vI
1)B2 ± TI °

q

var(vO
1 )B3 ± TO + µe,

as nk ! 1. Since TI + TO = e and var(vI
1) = var(vO

1 ) by assumption, it follows that

var(u1)B1 ° var(vI
1)B2 ± TI ° var(vO

1 )B3 ± TO has the same distribution as æB. Since the
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subsequence {nk} was arbitrary, we conclude

X̃

n ) æB + µe,

as n !1.

§

Proof of Theorem 3

Proof of (14)

We establish

W̃

n
O )

(1° Æ)wI

(1° Æ)wI + ÆwO

Z

µ

(28)

as n !1. Showing

W̃

n
I )

ÆwO

(1° Æ)wI + ÆwO

Z

µ

as n !1 follows an argument similar to Theorem 5.3 in Reiman (1984), and so is omitted.

Since the o≤ine service queue receives at least (1 ° Æ) proportion of the server’s eÆorts

when the queue is non-empty, (1°Æ)°1
W

n
O(t) exceeds the amount of time required to finish

serving all customers in the o≤ine queue that will eventually receive service. Therefore, at

time t > 0, the number of customers in the o≤ine queue that will eventually abandon is less

than or equal to

An(t) ¥ N

√

Z t+(1°Æ)°1W n
O(t)

0

∞Q

n
O(s)ds

!

°N

µ

Z t

0

∞Q

n
O(s)ds

∂

.

Then, Q

n
O(t)°An(t) is a lower bound on the number of customers in the o≤ine queue that

will eventually receive service, and so

L

n
O(t) ¥

Sn
O(T n

O(t))+Qn
O(t)°An(t)

X

j=Sn
O(T n

O(t))+2

v

O
j

nµ

n
∑ W

n
O(t).

Also, Q

n
O(t) is an upper bound on the number of customers in the o≤ine queue that will

eventually receive service, and so

U

n
O(t) ¥

Sn
O(T n

O(t))+Qn
O(t)

X

j=Sn
O(T n

O(t))+1

v

O
j

nµ

n
∏ W

n
O(t).
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We conclude

0 ∑
p

nW

n
O(t)°

p
nL

n
O(t) ∑

p
nU

n
O(t)°

p
nL

n
O(t). (29)

Define

Ṽ

n
O (t) ¥ 1p

n

bntc
X

i=1

°

v

O
i ° 1

¢

for all t ∏ 0.

Observe that

p
nU

n
O(t)°

p
nL

n
O(t) (30)

=
1

µ

n

1p
n

vSn
O(T n

O(t))+1 +
1

µ

n

1p
n

An(t)

+
1

µ

n

µ

Ṽ

n
O

µ

S

n
O(T n

O(t))

n

+
Q

n
O(t)

n

∂

° Ṽ

n
O

µ

S

n
O(T n

O(t))

n

+
Q

n
O(t)

n

° An(t)

n

∂∂

and

p
nL

n
O(t) (31)

=
1

µ

n
Q̃

n
O(t)° 1

µ

n

1p
n

° 1

µ

n

1p
n

An(t)

+
1

µ

n

µ

Ṽ

n
O

µ

S

n
O(T n

O(t))

n

+
Q

n
O(t)

n

° An(t)

n

∂

° Ṽ

n
O

µ

S

n
O(T n

O(t))

n

+
1

n

∂∂

.

We will first show that
p

nU

n
O °

p
nL

n
O ) 0 as n !1, and then show

p
nL

n
O )

(1° Æ)wI

(1° Æ)wI + ÆwO

Z

µ

(32)

as n !1. The inequality (29) and the converging together lemma then establish (28), and

so the weak convergence in (14) follows.

Since

1p
n

An(t) = Ñ

n

µ

ø

n

µ

t +
W

n
O(t)

1° Æ

∂∂

° Ñ

n (øn(t)) +

Z t+(1°Æ)°1W n
O(t)

t

∞Q̃

n
O(s)ds,

and Lemma 1 establishes ø

n ! 0 and W

n
O ! 0 a.s., u.o.c., it follows from the functional

central limit theorem, continuous mapping theorem, and the weak convergence of Q̃

n
O in (13)

that
1p
n

An ) 0 (33)

as n ! 1. It follows from Lemma 3 in Iglehart and Whitt (1970) that for any t > 0

n

°1/2
vSn

O(T n
O(t))+1 ! 0 in probability, as n ! 1. Now, the sequence {T n

O} is tight in D
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because |T n
O(t)° T

n
O(s)| ∑ |t° s|. On any subsequence {nk} on which

T

nk
O ) TO

as nk ! 1, the functional strong law of large numbers and random time change theorem

establish
S

nk
O ± T

nk
O

nk

) µTO

as nk ! 1. Furthermore, on this same subsequence, by the convergences in (33) and

Lemma 1, n

°1
k Ank ) 0 and n

°1
k Q

nk
O ! 0 a.s., u.o.c. as nk ! 1. Therefore, because by

Donsker’s theorem Ṽ

n
O weakly converges to a continuous limit process,

Ṽ

nk
O

µ

S

nk
O (T nk

O (·))
nk

+
Q

nk
O (·)
nk

∂

° Ṽ

nk
O

µ

S

nk
O (T nk

O (·))
nk

+
Q

nk
O (·)
nk

° Ank(·)
nk

∂

) 0

as nk !1. Since the subsequence {nk} was arbitrary, it follows that

Ṽ

n
O

µ

S

n
O (T n

O(·))
n

+
Q

n
O(·)
n

∂

° Ṽ

n
O

µ

S

n
O (T n

O(·))
n

+
Q

n
O(·)
n

° An(·)
n

∂

) 0

as n !1. We conclude from (30) that as n !1

p
nU

n
O °

p
nL

n
O ) 0.

We now establish the weak convergence in (32). An argument similar to that in the above

paragraph shows

Ṽ

n
O

µ

S

n
O (T n

O(·))
n

+
Q

n
O(·)
n

° An(·)
n

∂

° Ṽ

n
O

µ

S

n
O (T n

O(·))
n

+
1

n

∂

) 0

as n ! 1. Hence, the representation of
p

nL

n
O in (31), Theorems 1 and 2 (specifically, the

resulting convergence in (13)), the convergence in (33), and the continuous mapping theorem

establish (32).

Proof of (15)

First observe that it is su±cient to show that for any t > 0,

P

µ

d

dt

T

n
I (t) = Æ

∂

! 1 and P

µ

d

dt

T

n
O(t) = 1° Æ

∂

! 1
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as n !1. Now, d
dt

T

n
I (t) = Æ and d

dt
T

n
O(t) = 1° Æ if and only if Q

n
I (t) > 0 and Q

n
O(t) > 0.

Hence it is enough to show

P (Qn
I (t) > 0) = P

≥

Q̃

n
I (t) > 0

¥

! 1

P (Qn
O(t) > 0) = P

≥

Q̃

n
O(t) > 0

¥

! 1

as n !1, which follows from the weak convergence in (13). §

Proof of Proposition 1

We must show the following.

(i) For any T > 0, sup0∑t∑T

Ø

Ø

Ø

wI

Æ
Q̃

n
I (t)° wO

1°Æ
Q̃

n
O(t)

Ø

Ø

Ø

! 0, in probability, as n !1.

(ii) As n !1,

≥

Q̃

n
, Ĩ

n
¥

) (Z, L).

(iii) As n !1, W̃

n
I ) ÆwO

(1°Æ)wI+ÆwO

Z
µ

and W̃

n
O )

(1°Æ)wI

(1°Æ)wI+ÆwO

Z
µ
.

(i): Modify the definitions of Ũ

n
1 and Ũ

n
2 in the proof of Theorem 1 so that

Ũ

n
1 (t, s) = ° wO

1° Æ

≥

Ã

n(t)° Ã

n(s)
¥

Ω

wO

1° Æ

(µn ° ∏

n)° µ

n

µ

wI +
Æ

1° Æ

wO

∂

+
wO

1° Æ

1

nl

n

æp
n(t° s)

Ũ

n
2 (t, s) = ° wO

1° Æ

≥

Ã

n(t)° Ã

n(s)
¥

Ω

wI

Æ

(µn ° ∏

n)° µ

n

µ

1° Æ

Æ

wI + wO

∂

+
wI

Æ

1

nl

n

æp
n(t° s).

With ªn and ª

§
n defined exactly as in the proof of Theorem 1, observe that when

wI

Æ

Q̃

n
I (ª§n) > (∑)

wO

1° Æ

Q̃

n
O (ª§n) ,

because the inline (o≤ine) queue does not become empty during [ª§n, ªn], the o≤ine (inline)

queue may become empty, and service occurs in discrete time intervals

S

n
I (t)° S

n
I (ª§n°) ∏ (∑)

π

t° ª

§
n°

l

n

∫

bÆn

1/3
µ

nc

S

n
O(t)° S

n
O (ª§n°) ∑ (∏)

π

t° ª

§
n°

l

n

∫

d(1° Æ)n1/3
µ

ne.
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Then, substitution of the above bounds into the equivalent of (25) in the proof of Theorem 1

in this setting (specifically, replace S

n
I (T n

I (t)) ° S

n
I (T n

I (ª§n°)) with S

n
I (t) ° S

n
I (ª§n°) and

S

n
O(T n

O(t))° S

n
O(T n

O(ª§n°)) with S

n
O(t)° S

n
O(ª§n°)) shows

Ø

Ø

Ø

Ø

wI

Æ

Q̃

n
I (t)° wO

1° Æ

Q̃

n
O(t)

Ø

Ø

Ø

Ø

∑ ≤

2
+ max

n

Ũ

n
1 (t, ª§n°) , Ũ

n
2 (t, ª§n°)

o

+
wO

1° Æ

1p
n

N

µ

Z t

0

∞Q

n
O(s)ds

∂

.

Noting that (nl

n)°1 = n

°1/3 ! 1 as n ! 1, the remainder of the proof proceeds exactly

as the proof of Theorem 1.

(ii): We first observe that the number-in-system process can be equivalently written as

Q

n
I (t) + Q

n
O(t) = A

n(t)°N

µ

Z t

0

∞Q

n
O(s)ds

∂

°
π

t

l

n

∫

n

1/3
µ

n + I

n(t), (34)

where I

n is a non-decreasing process for which
R1
0 (Qn

I (t) + Q

n
O(t)) dI

n(t) = 0 and I

n(0) = 0.

Specifically, the process I

n may increase only at discrete review time points {ln, 2ln, 3ln, . . .},
and is defined recursively as

I

n(0) = 0

I

n(iln) = I

n((i° 1)ln) +
£

n

1/3
µ

n °Q

n
I (iln°)°Q

n
O(iln°)

§+
.

The process I

n tracks the cumulative amount of spare capacity. To see the equation (34)

holds, note that

Q

n
I (t) + Q

n
O(t) = A

n(t)°N

µ

Z t

0

∞Q

n
O(s)ds

∂

° S

n
I

µπ

t

l

n

∫

l

n

∂

° S

n
O

µπ

t

l

n

∫

l

n

∂

,

and, for every i 2 {0, 1, . . .},

S

n
I (iln) + S

n
O(iln)° S

n
I ((i° 1)ln)° S

n
O((i° 1)ln)

= n

1/3
µ

n1{Qn
I (iln°) + Q

n
O(iln°) ∏ n

1/3
µ

n}

+ (Qn
I (iln°) + Q

n
O(iln°))1{Qn

I (iln°) + Q

n
O(iln°) < n

1/3
µ

n}.

Finally,

Z 1

0

(Qn
I (t) + Q

n
O(t)) dI

n(t) =
1

X

i=0

(Qn
I (iln) + Q

n
O(iln)) (In(iln)° I

n((i° 1)ln)) = 0.
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It follows from (34) that

Q̃

n(t) = X̃

n(t) + ≤̃

n(t)° (1° Æ)wI

ÆwO + (1° Æ)wI

∞

Z t

0

Q̃

n(s)ds + Ĩ

n(t)

for

X̃

n(t) = Ã

n(t)° Ñ

n (øn(t)) +
p

nt

µ

∏

n °
π

t

l

n

∫µ

l

n

t

∂

µ

n

∂

≤̃

n(t) = ∞

Z t

0

µ

(1° Æ)wI

ÆwO + (1° Æ)wI

Q̃

n(s)° Q̃

n
O(s)

∂

ds.

The properties of I

n then imply

≥

Q̃

n
, Ĩ

n
¥

= (¡∑
,√

∑)
≥

X̃

n + ≤

n
¥

.

The functional central limit theorem, the fact that Ñ

n±øn ) 0 as n !1 (by the same argu-

ment as that directly following (26) in the proof of Theorem 1), the heavy tra±c assumption

(8), the state space collapse in part (i), and the representation (Z, L) = (¡∑
,√

∑) (e + æB) in

(12) then establish

(¡∑
,√

∑)
≥

X̃

n + ≤̃

n
¥

) (¡∑
,√

∑) (æB + µe) = (Z,L)

as n !1.

(iii): We show that the weak convergence in (14) remains valid; the argument showing (15)

holds is exactly as in the proof of Theorem 3. The number of batches required to serve

all customers in the inline queue exceeds bQn
I (t)/(n1/3

µ

n)c and is less than dQn
I (t)/n1/3

µ

ne.
Since each batch requires l

n time units to process

l

n

π

Q

n
I (t)

n

1/3
µ

n

∫

∑ W

n
I (t) ∑

ª

Q

n
I (t)

n

1/3
µ

n

º

,

and so

0 ∑
p

nW

n
I (t)°

p
nl

n

π

Q

n
I (t)

n

1/3
µ

n

∫

∑
p

nl

n
.

Since
p

nl

n ! 0 as n !1 and by parts (i) and (ii) of this Proposition the weak convergence

in (13) remains valid,

p
nl

n Q

n
I

n

1/3
µ

n
=

1

µ

n
Q̃

n
I )

ÆwO

(1° Æ)wI + ÆwO

Z

µ

.
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We conclude

W̃

n
I )

ÆwO

(1° Æ)wI + ÆwO

Z

µ

as n !1.

Since whenever the number of customers in the o≤ine queue exceeds (1° Æ)n1/3
µ

n at a

discrete review time point, at least (1° Æ)n1/3
µ

n customers are served,

µ

Q

n
O(t)

(1° Æ)n1/3
µ

n
+ 1

∂

l

n

exceeds the amount of time required for all customers in the o≤ine queue that do not abandon

to be served. Hence the number of customers in the o≤ine queue that eventually do abandon

must be less than or equal to

An(t) ¥ N

0

@

Z t+

µ

Qn
O(t)

(1°Æ)n1/3µn
+1

∂

ln

0

∞Q

n
O(s)ds

1

A°N

µ

Z t

0

∞Q

n
O(s)ds

∂

.

Therefore,

ln

π

Q

n
O(t)°An(t)

n

1/3
µ

n

∫

∑ W

n
O(t) ∑ l

n

ª

Q

n
O(t)

n

1/3
µ

n

º

.

It follows from the observation that

µ

Q

n
O(t)

(1° Æ)n1/3
µ

n
+ 1

∂

l

n =
Q

n
O(t)

(1° Æ)µn
n

+ l

n ! 0

as n !1 that

An ) 0

as n ! 1 by identical argument as that in the proof of Theorem 3. As in the preceding

paragraph, we conclude

W̃

n
O )

(1° Æ)wI

(1° Æ)wI + ÆwO

Z

µ

as n !1. §

Proofs of Lemma 1

Define

X

n
(t) ¥ A

n
(t)° S

n

I (T n
I (t))° S

n

O (T n
O(t))°N

n
(øn(t)) + (∏n ° µ

n) t.

Then, for all t ∏ 0,

Q̄

n(t) = X̄

n(t)° ø̄

n(t) + µ

n
I

n(t).
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Since I

n is non-decreasing, I

n(0) = 0 and
R1
0 Q

n
(t)d (µn

I

n(t)) = 0, the process
°

Q

n
, µ

n
I

n
¢

can be represented in terms of the conventional two-sided regulator mapping as follows

°

Q

n
, µ

n
I

n
¢

= (¡, √)
°

X

n ° ø

n
¢

.

Since ø

n is a non-decreasing process, Lemma 5.1 in Kruk et al. (2006) establishes

¡

°

X

n ° ø

n
¢

∑ ¡

°

X

n¢
.

The functional strong law of large numbers and the heavy tra±c assumption (8) establish

X

n ! 0 a.s., u.o.c.,

as n !1, which implies, because ¡ is a continuous function, that

¡

°

X

n¢

! 0 a.s., u.o.c..

Since Q

n
is a non-negative process bounded above by ¡

°

X

n¢
, we conclude

Q

n ! 0 a.s., u.o.c.,

as n !1. It then follows that for any T > 0,

sup
0∑t∑T

|øn(t)| =

Z T

0

∞Q

n
(s)ds ! 0,

as n !1, and so

ø

n ! 0 a.s., u.o.c.,

as n ! 1. Since (¡,√) (0) = (0, 0) and √ is a continuous function, we can also conclude

that

I

n =
1

µ

n
√

°

X

n ° ø

n
¢

! 0 a.s., u.o.c.,

as n !1. The condition (6) then implies

T

n
I + T

n
O ! e a.s., u.o.c.,

as n !1.

It remains to show

W

n
O ! 0 a.s., u.o.c.,
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as n !1. First recall that for

U

n
O(t) ¥

Sn
O(T n

O(t))+Qn
O(t)

X

j=Sn
O(T n

O(t))+1

v

O
j

nµ

n

defined as in the proof of Theorem 3,

W

n
O(t) ∑ U

n
O(t) for all t ∏ 0.

Define

V

n

O(t) ¥ 1

n

bntc
X

i=1

°

v

O
i ° 1

¢

,

and observe that

U

n
O(t) =

1

µ

n

µ

V

n

O

µ

1

n

S

n
O (T n

O(t)) + Q

n

O(t)

∂

° V

n

O

µ

1

n

S

n
O (T n

O(t))

∂∂

+
1

µ

n
Q

n

O(t).

Since 0 ∑ Q

n

O(t) ∑ Q

n
(t) for all t ∏ 0 and we have already established Q

n ! 0 a.s., u.o.c.

as n !1, it follows that

Q

n

O ! 0 a.s., u.o.c.,

as n ! 1. Therefore, because also V

n

O ! 0 a.s., u.o.c. as n ! 1, it follows that U

n

O ! 0

a.s., u.o.c. as n !1, we conclude

W

n
O ! 0 a.s., u.o.c.,

as n !1. §

Proof of Lemma 2

Fix T > 0 and ≤ > 0. Define

¬̃

n ¥ Ã

n(t)° S̃

n
I (T n

I (t))° S̃

n
O (T n

O(t)) +
p

nt (∏n ° µ

n)

Ãn(t) ¥ 1p
n

N

µ

Z t

0

∞Q

n
O(s)ds

∂

.

Then,

Q̃

n(t) = ¬̃

n(t)° Ãn(t) + µ

n
Ĩ

n(t) ∏ 0 for all t ∏ 0.
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Since Ĩ

n is non-decreasing, Ĩ

n(0) = 0, and the condition (7) implies
R1

0 Q̃

n(t)d
≥

µ

n
Ĩ

n(t)
¥

=

0, the process
≥

Q̃

n
, µ

n
Ĩ

n
¥

can be represented in terms of the conventional two-sided regulator

mapping as follows
≥

Q̃

n
, µ

n
Ĩ

n
¥

= (¡, √)
≥

¬̃

n ° Ãn
¥

. (35)

Since Ãn is a non-decreasing process, Lemma 5.1 in Kruk et al. (2006) establishes that

¡

≥

¬̃

n ° Ãn
¥

(t) ∑ ¡ (¬̃n) (t) for all t ∏ 0. (36)

The functional central limit theorem, continuous mapping theorem, and heavy tra±c

assumption (8) establish

¡ (¬̃n) ) ¡ (µe + æW ) ,

as n !1. Since weak convergence implies the random variable sup0∑t∑T ¡ (¬̃n) (t) is tight,

there exists B and n0 large enough so that

P

µ

sup
0∑t∑T

¡ (¬̃n) (t) > B

∂

< ≤.

Therefore, it follows from the representation (35) and the upper bound (36) that

P

µ

sup
0∑t∑T

Q̃

n(t) > B

∂

< ≤.

§
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